
Franco Basile
Full Professor, Department of Chemistry
Our research in the ICE Network focuses on the development of Mass Spectrometry (MS)-based techniques for metabolomics analysis (metabolites and lipids) in bees. Using high-resolution chromatography (either LC or GC) with high-resolution MS, we aim at detecting the widest possible range of metabolites in a single analysis. This untargeted metabolomics approach, coupled with novel chemometrics and bioinformatics data analysis tools, allows us to compare the metabolic state between bee samples in an effort to help increase our understanding of the effects of climate change on bees.
Email me: basile@uwyo.edu

Michael Dillon
Associate Professor, Principal Investigator
For ICE, our main focus is understanding the physiology of insect overwintering. We primarily work with Bombus, but will collaborate on projects with Megachile and Osmia. Aside from measurements of metabolic rates and energy stores for different castes of Bombus and under different temperature, photoperiod, and diet conditions, we are collaborating on metabolomics for all three and leading up the modeling efforts aimed at incorporating our new understanding of physiology into predictions of climate change impacts.
Email me: Michael.Dillon@uwyo.edu

Megan Dillon
Research Associate/Lab Manager
I received my BS in Zoology from the University of Washington in 2000. Since then I have worked as a research and diagnostic laboratory technician, specializing in molecular biology techniques. As part of the ICE Network, I am working on the effects of diapause on macronutrients in bumblebee queens. Learn more about Megan HERE.
Email me: mdillon4@uwyo.edu

Mitch Helling
Postdoctoral Researcher
My research is on metabolomics with mass spectrometry to gain functional insight into organisms of interest, where I focus primarily on method development. This involves metabolite extraction, chromatographic separation, mass spectral analysis, data processing and interpretation. Specific research projects are often collaborative in nature, and so I am always learning. In addition to my work with the ICE Network, my current focus is to study microbial ecology throughout Wyoming, including the mechanisms of plant-microbe interactions and how that effects plant circadian clock, as well as the mechanisms involved in suppressing cheatgrass invasion of disturbed grass lands with crested wheatgrass.
Email me: mhelling@uwyo.edu


Banani Mondal
Ph.D. Candidate
My research focus is on Bee metabolomics and Lipidomics. Lipidomics is a subset of metabolomics devoted to the qualitative and quantitative measurement of lipids. By using the high-resolution GC-MS instrument, we will be able to identify the wide range of metabolites and lipids present in Bees. Through metabolomic study, we will measure not only changes in fat storage (both quantity and composition of fatty acids) but also the presence of cryoprotectants molecules. Learn more about Banani here.
Email me: bmondal@uwyo.edu

Sarah Waybright
Ph.D. Student
I am currently a first year PhD student in Dr. Michael Dillon’s lab at the University of Wyoming. Little is known about the physiological cues that trigger diapause in bumble bees, though a bumble bee queen spends nearly half of her life in this depressed metabolic state. What changes occur in a bumble bee’s macronutrients during the pre-diapause stage? Are there milestones that must be reached in macronutrient profiles before bumble bees can enter into diapause? These are the questions driving my research at the moment.
Email me: swaybrig@uwyo.edu

D. M. Shayne Dodge
Graduate Student, Department of Zoology and Physiology
As an undergraduate, I studied population dynamics of small mammals in post-burn areas of large-scale fires and, in particular, the role of crypsis on survival in these patchy landscapes. For my MS work, I am interested in the factors that determine entry into and exit from diapause, as indicated by shifts in the temperature dependence of metabolic rate in bumblebees. Learn more about Shayne here.
Email me: ddodge2@uwyo.edu

Ellen Keaveny
Graduate Student
It is unknown if bumble bees are physiologically capable of rapid cold-hardening (an increase in cold tolerance after cold exposure). Along with rapid cold-hardening experiments, using lipidomic and metabolomic approaches will allow us to determine how potential cellular responses to cold exposure facilitate subsequent cold tolerance. Diet (nectar and pollen) likely also alters cellular composition, with cascading effects on thermal physiology. Seasonal and geographic variation in composition of nectar and pollen could therefore indirectly alter bee thermal physiology. I will investigate effects of diet, previous cold exposure on cellular composition and thermal tolerance of bumble bees this spring and summer.
Email me: ekeaveny@uwyo.edu




Taylor Hatcher
Undergraduate Student
My research is focused on Bombus and species differences in a chill coma. Specifically, we are interested in measuring differences in expression levels of Shal, an ion-gated channel protein that regulates potassium permeability of neural membranes. We are curious to see if there are varying levels of expression of Shal with chill coma induction. I am trying to delve deeper into understanding the cellular mechanistic basis of the spreading depolarization response that happens with the entry of chill coma. Learn more about Taylor HERE.
Email me: thatche1@uwyo.edu
